Data Manipulation

Code for Quiz 5 More practice with dplyr functions

  1. Load the R packages we will use
  1. Read the data in the file ‘drug_cos.csv’ in to R and assign it to ‘drug_cos’
drug_cos <- read_csv("http://estanny.com/static/week5/drug_cos.csv")
  1. Use ‘glimpse()’ to get a glimpse of your data
glimpse(drug_cos)
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS…
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoe…
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New…
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.36…
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.66…
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.16…
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.32…
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.48…
$ year         <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018…
  1. Use ‘distinct ()’ to subset distinct rows
drug_cos %>% 
  distinct(year)
# A tibble: 8 x 1
   year
  <dbl>
1  2011
2  2012
3  2013
4  2014
5  2015
6  2016
7  2017
8  2018
  1. Use ‘count’ to count observations by group
drug_cos %>% 
  count(year)
# A tibble: 8 x 2
   year     n
* <dbl> <int>
1  2011    13
2  2012    13
3  2013    13
4  2014    13
5  2015    13
6  2016    13
7  2017    13
8  2018    13
drug_cos %>% 
  count(name)
# A tibble: 13 x 2
   name                        n
 * <chr>                   <int>
 1 AbbVie Inc                  8
 2 Allergan plc                8
 3 Amgen Inc                   8
 4 Biogen Inc                  8
 5 Bristol Myers Squibb Co     8
 6 ELI LILLY & Co              8
 7 Gilead Sciences Inc         8
 8 Johnson & Johnson           8
 9 Merck & Co Inc              8
10 Mylan NV                    8
11 PERRIGO Co plc              8
12 Pfizer Inc                  8
13 Zoetis Inc                  8
drug_cos %>% 
  count(ticker,name)
# A tibble: 13 x 3
   ticker name                        n
   <chr>  <chr>                   <int>
 1 ABBV   AbbVie Inc                  8
 2 AGN    Allergan plc                8
 3 AMGN   Amgen Inc                   8
 4 BIIB   Biogen Inc                  8
 5 BMY    Bristol Myers Squibb Co     8
 6 GILD   Gilead Sciences Inc         8
 7 JNJ    Johnson & Johnson           8
 8 LLY    ELI LILLY & Co              8
 9 MRK    Merck & Co Inc              8
10 MYL    Mylan NV                    8
11 PFE    Pfizer Inc                  8
12 PRGO   PERRIGO Co plc              8
13 ZTS    Zoetis Inc                  8

Use ‘filter()’ to extract rows that meet criteria

6.Extract rows in non-consecutive years

drug_cos %>% 
  filter(year%in%c(2013,2018))
# A tibble: 26 x 9
   ticker name  location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 ZTS    Zoet… New Jer…        0.222       0.634     0.111 0.176
 2 ZTS    Zoet… New Jer…        0.379       0.672     0.245 0.326
 3 PRGO   PERR… Ireland         0.236       0.362     0.125 0.19 
 4 PRGO   PERR… Ireland         0.178       0.387     0.028 0.088
 5 PFE    Pfiz… New Yor…        0.634       0.814     0.427 0.51 
 6 PFE    Pfiz… New Yor…        0.34        0.79      0.208 0.221
 7 MYL    Myla… United …        0.228       0.44      0.09  0.153
 8 MYL    Myla… United …        0.258       0.35      0.031 0.074
 9 MRK    Merc… New Jer…        0.282       0.615     0.1   0.123
10 MRK    Merc… New Jer…        0.313       0.681     0.147 0.206
# … with 16 more rows, and 2 more variables: roe <dbl>, year <dbl>
  1. Extract every other year from 2012 to 2018
drug_cos %>% 
  filter(year%in%seq(2012,2018, by=2))
# A tibble: 52 x 9
   ticker name  location ebitdamargin grossmargin netmargin    ros
   <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl>  <dbl>
 1 ZTS    Zoet… New Jer…        0.217       0.64      0.101  0.171
 2 ZTS    Zoet… New Jer…        0.238       0.641     0.122  0.195
 3 ZTS    Zoet… New Jer…        0.335       0.659     0.168  0.286
 4 ZTS    Zoet… New Jer…        0.379       0.672     0.245  0.326
 5 PRGO   PERR… Ireland         0.226       0.345     0.127  0.183
 6 PRGO   PERR… Ireland         0.157       0.371     0.059  0.104
 7 PRGO   PERR… Ireland        -0.791       0.389    -0.76  -0.877
 8 PRGO   PERR… Ireland         0.178       0.387     0.028  0.088
 9 PFE    Pfiz… New Yor…        0.447       0.82      0.267  0.307
10 PFE    Pfiz… New Yor…        0.359       0.807     0.184  0.247
# … with 42 more rows, and 2 more variables: roe <dbl>, year <dbl>
  1. Extract the tickets “PFE” and “MYL”
drug_cos %>% 
  filter(ticker%in%c("PFE", "MYL"))
# A tibble: 16 x 9
   ticker name  location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 PFE    Pfiz… New Yor…        0.371       0.795     0.164 0.223
 2 PFE    Pfiz… New Yor…        0.447       0.82      0.267 0.307
 3 PFE    Pfiz… New Yor…        0.634       0.814     0.427 0.51 
 4 PFE    Pfiz… New Yor…        0.359       0.807     0.184 0.247
 5 PFE    Pfiz… New Yor…        0.289       0.803     0.142 0.183
 6 PFE    Pfiz… New Yor…        0.267       0.767     0.137 0.158
 7 PFE    Pfiz… New Yor…        0.353       0.786     0.406 0.233
 8 PFE    Pfiz… New Yor…        0.34        0.79      0.208 0.221
 9 MYL    Myla… United …        0.245       0.418     0.088 0.161
10 MYL    Myla… United …        0.244       0.428     0.094 0.163
11 MYL    Myla… United …        0.228       0.44      0.09  0.153
12 MYL    Myla… United …        0.242       0.457     0.12  0.169
13 MYL    Myla… United …        0.243       0.447     0.09  0.133
14 MYL    Myla… United …        0.19        0.424     0.043 0.052
15 MYL    Myla… United …        0.272       0.402     0.058 0.121
16 MYL    Myla… United …        0.258       0.35      0.031 0.074
# … with 2 more variables: roe <dbl>, year <dbl>

Use ‘select()’ to select, rename, and reorder columns

  1. Select columns ‘ticker’ ‘name’ ‘ros’
drug_cos %>% 
  select(ticker,name,ros)
# A tibble: 104 x 3
   ticker name             ros
   <chr>  <chr>          <dbl>
 1 ZTS    Zoetis Inc     0.101
 2 ZTS    Zoetis Inc     0.171
 3 ZTS    Zoetis Inc     0.176
 4 ZTS    Zoetis Inc     0.195
 5 ZTS    Zoetis Inc     0.14 
 6 ZTS    Zoetis Inc     0.286
 7 ZTS    Zoetis Inc     0.321
 8 ZTS    Zoetis Inc     0.326
 9 PRGO   PERRIGO Co plc 0.178
10 PRGO   PERRIGO Co plc 0.183
# … with 94 more rows
  1. Use ‘select’ to exclude columns ‘ticker’ ‘name’ and ‘ros’
drug_cos %>% 
  select(-ticker,name,ros)
# A tibble: 104 x 8
   name  location ebitdamargin grossmargin netmargin   ros   roe  year
   <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl> <dbl>
 1 Zoet… New Jer…        0.149       0.61      0.058 0.101 0.069  2011
 2 Zoet… New Jer…        0.217       0.64      0.101 0.171 0.113  2012
 3 Zoet… New Jer…        0.222       0.634     0.111 0.176 0.612  2013
 4 Zoet… New Jer…        0.238       0.641     0.122 0.195 0.465  2014
 5 Zoet… New Jer…        0.182       0.635     0.071 0.14  0.285  2015
 6 Zoet… New Jer…        0.335       0.659     0.168 0.286 0.587  2016
 7 Zoet… New Jer…        0.366       0.666     0.163 0.321 0.488  2017
 8 Zoet… New Jer…        0.379       0.672     0.245 0.326 0.694  2018
 9 PERR… Ireland         0.216       0.343     0.123 0.178 0.248  2011
10 PERR… Ireland         0.226       0.345     0.127 0.183 0.236  2012
# … with 94 more rows
  1. Rename and reorder columns with ‘select’

start with ‘drug_cos’ THEN

change the name of the ‘location’ to ‘headquarter’

put the columns in this order: ‘year’ ‘ticker’ ‘headquarter’ ‘netmargin’ ‘roe’

drug_cos %>% 
  select(year,ticker, headquarter=location,netmargin,roe)
# A tibble: 104 x 5
    year ticker headquarter       netmargin   roe
   <dbl> <chr>  <chr>                 <dbl> <dbl>
 1  2011 ZTS    New Jersey; U.S.A     0.058 0.069
 2  2012 ZTS    New Jersey; U.S.A     0.101 0.113
 3  2013 ZTS    New Jersey; U.S.A     0.111 0.612
 4  2014 ZTS    New Jersey; U.S.A     0.122 0.465
 5  2015 ZTS    New Jersey; U.S.A     0.071 0.285
 6  2016 ZTS    New Jersey; U.S.A     0.168 0.587
 7  2017 ZTS    New Jersey; U.S.A     0.163 0.488
 8  2018 ZTS    New Jersey; U.S.A     0.245 0.694
 9  2011 PRGO   Ireland               0.123 0.248
10  2012 PRGO   Ireland               0.127 0.236
# … with 94 more rows

Question: filter and select

start with ‘drug_cos’ THEN extract information for the tickers PFE, MRK, BMY THEN select the variables ‘ticker’ ‘year’ and ros

drug_cos %>% 
  filter(ticker%in%c("MYL","AGN","PFE")) %>% 
  select(ticker,year,grossmargin)
# A tibble: 24 x 3
   ticker  year grossmargin
   <chr>  <dbl>       <dbl>
 1 PFE     2011       0.795
 2 PFE     2012       0.82 
 3 PFE     2013       0.814
 4 PFE     2014       0.807
 5 PFE     2015       0.803
 6 PFE     2016       0.767
 7 PFE     2017       0.786
 8 PFE     2018       0.79 
 9 MYL     2011       0.418
10 MYL     2012       0.428
# … with 14 more rows

Question: rename

start with ‘drug_cos’ THEN extract information for the tickers LLY,MRK THEN select the variable ‘ticker’ ** ‘netmargin’ ** and ‘roe’ Change the name of ‘roe’ to ‘return on equity’

drug_cos%>% 
  filter(ticker%in%c("LLY","MRK")) %>% 
  select(ticker,netmargin,'return_on_equity' =roe)
# A tibble: 16 x 3
   ticker netmargin return_on_equity
   <chr>      <dbl>            <dbl>
 1 MRK        0.131            0.114
 2 MRK        0.13             0.113
 3 MRK        0.1              0.089
 4 MRK        0.282            0.248
 5 MRK        0.112            0.096
 6 MRK        0.098            0.092
 7 MRK        0.06             0.063
 8 MRK        0.147            0.199
 9 LLY        0.179            0.306
10 LLY        0.181            0.273
11 LLY        0.203            0.290
12 LLY        0.122            0.138
13 LLY        0.121            0.162
14 LLY        0.129            0.185
15 LLY       -0.009           -0.015
16 LLY        0.132            0.264
  1. ‘select’ ranges of columns

by name

drug_cos %>% 
  select(ebitdamargin:netmargin)
# A tibble: 104 x 3
   ebitdamargin grossmargin netmargin
          <dbl>       <dbl>     <dbl>
 1        0.149       0.61      0.058
 2        0.217       0.64      0.101
 3        0.222       0.634     0.111
 4        0.238       0.641     0.122
 5        0.182       0.635     0.071
 6        0.335       0.659     0.168
 7        0.366       0.666     0.163
 8        0.379       0.672     0.245
 9        0.216       0.343     0.123
10        0.226       0.345     0.127
# … with 94 more rows

by position

drug_cos %>% 
  select(4:6)
# A tibble: 104 x 3
   ebitdamargin grossmargin netmargin
          <dbl>       <dbl>     <dbl>
 1        0.149       0.61      0.058
 2        0.217       0.64      0.101
 3        0.222       0.634     0.111
 4        0.238       0.641     0.122
 5        0.182       0.635     0.071
 6        0.335       0.659     0.168
 7        0.366       0.666     0.163
 8        0.379       0.672     0.245
 9        0.216       0.343     0.123
10        0.226       0.345     0.127
# … with 94 more rows
  1. ‘select’ helper functions

‘starts_with(“abc”)’ matches columns start with “abc”

‘ends_with(“abc”)’ matches columns end with “abc”

‘contains(“abc”)’ matches columns contain “abc”

drug_cos %>% 
  select(ticker,contains("locat"))
# A tibble: 104 x 2
   ticker location         
   <chr>  <chr>            
 1 ZTS    New Jersey; U.S.A
 2 ZTS    New Jersey; U.S.A
 3 ZTS    New Jersey; U.S.A
 4 ZTS    New Jersey; U.S.A
 5 ZTS    New Jersey; U.S.A
 6 ZTS    New Jersey; U.S.A
 7 ZTS    New Jersey; U.S.A
 8 ZTS    New Jersey; U.S.A
 9 PRGO   Ireland          
10 PRGO   Ireland          
# … with 94 more rows
drug_cos %>% 
  select(ticker, starts_with("r"))
# A tibble: 104 x 3
   ticker   ros   roe
   <chr>  <dbl> <dbl>
 1 ZTS    0.101 0.069
 2 ZTS    0.171 0.113
 3 ZTS    0.176 0.612
 4 ZTS    0.195 0.465
 5 ZTS    0.14  0.285
 6 ZTS    0.286 0.587
 7 ZTS    0.321 0.488
 8 ZTS    0.326 0.694
 9 PRGO   0.178 0.248
10 PRGO   0.183 0.236
# … with 94 more rows
drug_cos %>% 
  select(year,ends_with("margin"))
# A tibble: 104 x 4
    year ebitdamargin grossmargin netmargin
   <dbl>        <dbl>       <dbl>     <dbl>
 1  2011        0.149       0.61      0.058
 2  2012        0.217       0.64      0.101
 3  2013        0.222       0.634     0.111
 4  2014        0.238       0.641     0.122
 5  2015        0.182       0.635     0.071
 6  2016        0.335       0.659     0.168
 7  2017        0.366       0.666     0.163
 8  2018        0.379       0.672     0.245
 9  2011        0.216       0.343     0.123
10  2012        0.226       0.345     0.127
# … with 94 more rows

Use ‘group_by’ to set up data for operations by group

  1. ‘group_by’
drug_cos %>% 
  group_by(ticker)
# A tibble: 104 x 9
# Groups:   ticker [13]
   ticker name  location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 ZTS    Zoet… New Jer…        0.149       0.61      0.058 0.101
 2 ZTS    Zoet… New Jer…        0.217       0.64      0.101 0.171
 3 ZTS    Zoet… New Jer…        0.222       0.634     0.111 0.176
 4 ZTS    Zoet… New Jer…        0.238       0.641     0.122 0.195
 5 ZTS    Zoet… New Jer…        0.182       0.635     0.071 0.14 
 6 ZTS    Zoet… New Jer…        0.335       0.659     0.168 0.286
 7 ZTS    Zoet… New Jer…        0.366       0.666     0.163 0.321
 8 ZTS    Zoet… New Jer…        0.379       0.672     0.245 0.326
 9 PRGO   PERR… Ireland         0.216       0.343     0.123 0.178
10 PRGO   PERR… Ireland         0.226       0.345     0.127 0.183
# … with 94 more rows, and 2 more variables: roe <dbl>, year <dbl>
drug_cos %>% 
  group_by(year)
# A tibble: 104 x 9
# Groups:   year [8]
   ticker name  location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 ZTS    Zoet… New Jer…        0.149       0.61      0.058 0.101
 2 ZTS    Zoet… New Jer…        0.217       0.64      0.101 0.171
 3 ZTS    Zoet… New Jer…        0.222       0.634     0.111 0.176
 4 ZTS    Zoet… New Jer…        0.238       0.641     0.122 0.195
 5 ZTS    Zoet… New Jer…        0.182       0.635     0.071 0.14 
 6 ZTS    Zoet… New Jer…        0.335       0.659     0.168 0.286
 7 ZTS    Zoet… New Jer…        0.366       0.666     0.163 0.321
 8 ZTS    Zoet… New Jer…        0.379       0.672     0.245 0.326
 9 PRGO   PERR… Ireland         0.216       0.343     0.123 0.178
10 PRGO   PERR… Ireland         0.226       0.345     0.127 0.183
# … with 94 more rows, and 2 more variables: roe <dbl>, year <dbl>
  1. Maximum ‘roe’ for all companies
drug_cos %>% 
  summarize(max_roe=max(roe))
# A tibble: 1 x 1
  max_roe
    <dbl>
1    1.31

maximum ‘roe’ for each ‘year’

drug_cos %>% 
  group_by(year) %>% 
  summarize(max_roe=max(roe))
# A tibble: 8 x 2
   year max_roe
* <dbl>   <dbl>
1  2011   0.451
2  2012   0.69 
3  2013   1.13 
4  2014   0.828
5  2015   1.31 
6  2016   1.11 
7  2017   0.932
8  2018   0.694

maximum ‘roe’ for each ‘ticker’

drug_cos %>% 
  group_by(ticker) %>% 
  summarize(max_roe=max(roe))
# A tibble: 13 x 2
   ticker max_roe
 * <chr>    <dbl>
 1 ABBV     1.31 
 2 AGN      0.184
 3 AMGN     0.585
 4 BIIB     0.334
 5 BMY      0.373
 6 GILD     1.04 
 7 JNJ      0.244
 8 LLY      0.306
 9 MRK      0.248
10 MYL      0.283
11 PFE      0.342
12 PRGO     0.248
13 ZTS      0.694

##Question: summarize

Mean for 2013

Find mean ros for each ’year; and call the variable mean_ros

Extract the mean for 2013

drug_cos %>% 
  group_by(year) %>% 
  summarize(mean_ros=mean(ros)) %>% 
  filter(year==2013)
# A tibble: 1 x 2
   year mean_ros
  <dbl>    <dbl>
1  2013    0.227

The mean ros for 2013 is .227 or 22.7%

Median for 2013

Find median ros for each ‘year’ and call the variable median_ros

Extract the median for 2013

drug_cos %>% 
  group_by(year) %>% 
  summarize(median_ros=median(ros)) %>% 
  filter(year==2013)
# A tibble: 1 x 2
   year median_ros
  <dbl>      <dbl>
1  2013      0.224

The median ros for 2013 is .224 or 22.4%

  1. Pick a ratio and a year and compare the companies.
drug_cos %>% 
  filter(year==2016) %>% 
  ggplot(aes(x=netmargin, y=reorder(name,netmargin)))+
geom_col()+
scale_x_continuous(labels=scales::percent)+
labs(title="Comparison of net margin",
     subtitle="for drug companies during 2016",
     x=NULL, y=NULL)+
theme_classic()

  1. Pick a company and a ratio and compare the ratio overtime
drug_cos %>% 
  filter(ticker=="PFE") %>% 
  ggplot(aes(x=year, y=netmargin))+
geom_col()+
scale_y_continuous(labels=scales::percent)+
labs(title="Comparison of net margin",
     subtitle="for Pfizer from 2011 to 2018",
     x=NULL, y=NULL)+
theme_classic()
ggsave(filename="preview.png",
       path=here::here("_posts","2021-03-08-data-manipulation"))