Hypothesis Testing

Using computer simulation. Based on examples from the infer package. Code for Quiz 13.

Load the R package we will use.

Question: t-test

set.seed(123)

hr_1_tidy.csv is the name of your data subset

hr  <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv", 
                col_types = "fddfff")

use the skim to summarize the data in hr

skim(hr)
Table 1: Data summary
Name hr
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 4
numeric 2
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
gender 0 1 FALSE 2 fem: 260, mal: 240
evaluation 0 1 FALSE 4 bad: 153, fai: 142, goo: 106, ver: 99
salary 0 1 FALSE 6 lev: 93, lev: 92, lev: 91, lev: 84
status 0 1 FALSE 3 fir: 185, pro: 162, ok: 153

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age 0 1 40.60 11.58 20.2 30.37 41.00 50.82 59.9 ▇▇▇▇▇
hours 0 1 49.32 13.13 35.0 37.55 45.25 58.45 79.7 ▇▂▃▂▂

The mean hours worked per week is: 49.3

# Q: Is the mean number of hours worked per week 48?

specify that hours is the variable of interest

hr  %>% 
  specify(response = hours)
Response: hours (numeric)
# A tibble: 500 x 1
   hours
   <dbl>
 1  36.5
 2  55.8
 3  35  
 4  52  
 5  35.1
 6  36.3
 7  40.1
 8  42.7
 9  66.6
10  35.5
# … with 490 more rows

hypothesize that the average hours worked is 48

hr  %>% 
  specify(response = hours)  %>% 
  hypothesize(null = "point", mu = 48)
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500 x 1
   hours
   <dbl>
 1  36.5
 2  55.8
 3  35  
 4  52  
 5  35.1
 6  36.3
 7  40.1
 8  42.7
 9  66.6
10  35.5
# … with 490 more rows

generate 1000 replicates representing the null hypothesis

hr %>% 
  specify(response = hours)  %>% 
  hypothesize(null = "point", mu = 48)  %>% 
  generate(reps = 1000, type = "bootstrap") 
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500,000 x 2
# Groups:   replicate [1,000]
   replicate hours
       <int> <dbl>
 1         1  33.7
 2         1  34.9
 3         1  46.6
 4         1  33.8
 5         1  61.2
 6         1  34.7
 7         1  37.9
 8         1  39.0
 9         1  62.8
10         1  50.9
# … with 499,990 more rows

The output has 500,000 rows


calculate the distribution of statistics from the generated data

null_t_distribution  <- hr  %>% 
  specify(response = age)  %>% 
  hypothesize(null = "point", mu = 48)  %>% 
  generate(reps = 1000, type = "bootstrap")  %>% 
  calculate(stat = "t")

null_t_distribution
# A tibble: 1,000 x 2
   replicate   stat
       <int>  <dbl>
 1         1  0.802
 2         2 -0.706
 3         3  1.33 
 4         4 -0.245
 5         5 -1.11 
 6         6  0.382
 7         7 -0.904
 8         8  0.816
 9         9  0.968
10        10  0.979
# … with 990 more rows

visualize the simulated null distribution

visualize(null_t_distribution)


calculate the statistic from your observed data

observed_t_statistic  <- hr  %>%
  specify(response = hours)  %>% 
  hypothesize(null = "point", mu = 48)  %>%
  calculate(stat = "t")

observed_t_statistic
# A tibble: 1 x 1
   stat
  <dbl>
1  2.25

get_p_value from the simulated null distribution and the observed statistic

null_t_distribution  %>% 
  get_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
# A tibble: 1 x 1
  p_value
    <dbl>
1   0.022

shade_p_value on the simulated null distribution

null_t_distribution  %>% 
  visualize() +
  shade_p_value(obs_stat = observed_t_statistic, direction = "two-sided")


Is the p-value < 0.05? yes

Does your analysis support the null hypothesis that the true mean number of hours worked was 48? no


Question:2 sample t-test

hr_2_tidy.csv is the name of your data subset

hr_2 <- read_csv("https://estanny.com/static/week13/data/hr_2_tidy.csv", 
                col_types = "fddfff") 

# Q: Is the average number of hours worked the same for both genders?

use skim to summarize the data in hr_2 by gender

hr_2 %>% 
  group_by(gender)  %>% 
  skim()
Table 2: Data summary
Name Piped data
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 3
numeric 2
________________________
Group variables gender

Variable type: factor

skim_variable gender n_missing complete_rate ordered n_unique top_counts
evaluation male 0 1 FALSE 4 bad: 79, fai: 68, goo: 61, ver: 48
evaluation female 0 1 FALSE 4 bad: 75, fai: 74, ver: 48, goo: 47
salary male 0 1 FALSE 6 lev: 49, lev: 48, lev: 48, lev: 44
salary female 0 1 FALSE 6 lev: 47, lev: 46, lev: 41, lev: 39
status male 0 1 FALSE 3 fir: 93, pro: 90, ok: 73
status female 0 1 FALSE 3 fir: 101, pro: 89, ok: 54

Variable type: numeric

skim_variable gender n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age male 0 1 38.63 11.57 20.3 28.50 37.85 49.52 59.6 ▇▇▆▆▆
age female 0 1 41.14 11.43 20.3 31.30 41.60 50.90 59.9 ▆▅▇▇▇
hours male 0 1 49.30 13.24 35.0 37.35 46.00 59.23 79.9 ▇▃▂▂▂
hours female 0 1 49.49 13.08 35.0 37.68 45.05 58.73 78.4 ▇▃▃▂▂

Use geom_boxplot to plot distributions of hours worked by gender

hr_2 %>% 
  ggplot(aes(x = gender, y = hours)) + 
  geom_boxplot()


specify the variables of interest are hours and gender

hr_2 %>% 
  specify(response = hours, explanatory = gender)
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 500 x 2
   hours gender
   <dbl> <fct> 
 1  78.1 male  
 2  35.1 female
 3  36.9 female
 4  38.5 male  
 5  36.1 male  
 6  78.1 female
 7  76   female
 8  35.6 female
 9  35.6 male  
10  56.8 male  
# … with 490 more rows

hypothesize that the number of hours worked and gender are independent

hr_2  %>% 
  specify(response = hours, explanatory = gender)  %>% 
  hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
   hours gender
   <dbl> <fct> 
 1  78.1 male  
 2  35.1 female
 3  36.9 female
 4  38.5 male  
 5  36.1 male  
 6  78.1 female
 7  76   female
 8  35.6 female
 9  35.6 male  
10  56.8 male  
# … with 490 more rows

generate 1000 replicates representing the null hypothesis

hr_2 %>% 
  specify(response = hours, explanatory = gender)  %>% 
  hypothesize(null = "independence")  %>% 
  generate(reps = 1000, type = "permute") 
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups:   replicate [1,000]
   hours gender replicate
   <dbl> <fct>      <int>
 1  47.8 male           1
 2  60.3 female         1
 3  46.5 female         1
 4  37.2 male           1
 5  74.1 male           1
 6  35.9 female         1
 7  35.6 female         1
 8  54.5 female         1
 9  55.6 male           1
10  44.1 male           1
# … with 499,990 more rows

The output has 500,000 rows


calculate the distribution of statistics from the generated data

null_distribution_2_sample_permute  <- hr_2 %>% 
  specify(response = hours, explanatory = gender)  %>% 
  hypothesize(null = "independence")  %>% 
  generate(reps = 1000, type = "permute")  %>% 
  calculate(stat = "t", order = c("female", "male"))

null_distribution_2_sample_permute
# A tibble: 1,000 x 2
   replicate   stat
       <int>  <dbl>
 1         1  0.505
 2         2 -0.650
 3         3  0.279
 4         4  0.435
 5         5  1.73 
 6         6 -0.139
 7         7 -2.14 
 8         8  0.274
 9         9  0.766
10        10  1.52 
# … with 990 more rows

visualize the simulated null distribution

visualize(null_distribution_2_sample_permute)


calculate the statistic from your observed data

observed_t_2_sample_stat  <- hr_2 %>%
  specify(response = hours, explanatory = gender)  %>% 
  calculate(stat = "t", order = c("female", "male"))

observed_t_2_sample_stat
# A tibble: 1 x 1
   stat
  <dbl>
1 0.160

get_p_value from the simulated null distribution and the observed statistic

null_t_distribution  %>% 
  get_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")
# A tibble: 1 x 1
  p_value
    <dbl>
1   0.918

shade_p_value on the simulated null distribution

null_t_distribution  %>% 
  visualize() +
  shade_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")


Is the p-value < 0.05? no

Does your analysis support the null hypothesis that the true mean number of hours worked by female and male employees was the same? yes


Question:ANOVA

hr_1_tidy.csv is the name of your data subset

hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv", 
                col_types = "fddfff") 

Q: Is the average number of hours worked the same for all three status (fired, ok and promoted) ?

use skim to summarize the data in hr_anova by status

hr_anova %>% 
  group_by(status)  %>% 
  skim()
Table 3: Data summary
Name Piped data
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 3
numeric 2
________________________
Group variables status

Variable type: factor

skim_variable status n_missing complete_rate ordered n_unique top_counts
gender fired 0 1 FALSE 2 fem: 96, mal: 89
gender ok 0 1 FALSE 2 fem: 77, mal: 76
gender promoted 0 1 FALSE 2 fem: 87, mal: 75
evaluation fired 0 1 FALSE 4 bad: 65, fai: 63, goo: 31, ver: 26
evaluation ok 0 1 FALSE 4 bad: 69, fai: 59, goo: 15, ver: 10
evaluation promoted 0 1 FALSE 4 ver: 63, goo: 60, fai: 20, bad: 19
salary fired 0 1 FALSE 6 lev: 41, lev: 37, lev: 32, lev: 32
salary ok 0 1 FALSE 6 lev: 40, lev: 37, lev: 29, lev: 23
salary promoted 0 1 FALSE 6 lev: 37, lev: 35, lev: 29, lev: 23

Variable type: numeric

skim_variable status n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age fired 0 1 38.64 11.43 20.2 28.30 38.30 47.60 59.6 ▇▇▇▅▆
age ok 0 1 41.34 12.11 20.3 31.00 42.10 51.70 59.9 ▆▆▆▆▇
age promoted 0 1 42.13 10.98 21.0 33.40 42.95 50.98 59.9 ▆▅▆▇▇
hours fired 0 1 41.67 7.88 35.0 36.10 38.90 43.90 75.5 ▇▂▁▁▁
hours ok 0 1 48.05 11.65 35.0 37.70 45.60 56.10 78.2 ▇▃▃▂▁
hours promoted 0 1 59.27 12.90 35.0 51.12 60.10 70.15 79.7 ▆▅▇▇▇

Use geom_boxplot to plot distributions of hours worked by status

hr_anova %>% 
  ggplot(aes(x = status, y = hours)) + 
  geom_boxplot()


specify the variables of interest are hours and status

hr_anova %>% 
  specify(response = hours, explanatory = status)
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 500 x 2
   hours status  
   <dbl> <fct>   
 1  36.5 fired   
 2  55.8 ok      
 3  35   fired   
 4  52   promoted
 5  35.1 ok      
 6  36.3 ok      
 7  40.1 promoted
 8  42.7 fired   
 9  66.6 promoted
10  35.5 ok      
# … with 490 more rows

hypothesize that the number of hours worked and status are independent

hr_anova  %>% 
  specify(response = hours, explanatory = status)  %>% 
  hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
   hours status  
   <dbl> <fct>   
 1  36.5 fired   
 2  55.8 ok      
 3  35   fired   
 4  52   promoted
 5  35.1 ok      
 6  36.3 ok      
 7  40.1 promoted
 8  42.7 fired   
 9  66.6 promoted
10  35.5 ok      
# … with 490 more rows

generate 1000 replicates representing the null hypothesis

hr_anova %>% 
  specify(response = hours, explanatory = status)  %>% 
  hypothesize(null = "independence")  %>% 
  generate(reps = 1000, type = "permute") 
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups:   replicate [1,000]
   hours status   replicate
   <dbl> <fct>        <int>
 1  40.3 fired            1
 2  40.3 ok               1
 3  37.3 fired            1
 4  50.5 promoted         1
 5  35.1 ok               1
 6  67.8 ok               1
 7  39.3 promoted         1
 8  35.7 fired            1
 9  40.2 promoted         1
10  38.4 ok               1
# … with 499,990 more rows

The output has 500,000 rows


calculate the distribution of statistics from the generated data

null_distribution_anova  <- hr_anova %>% 
  specify(response = hours, explanatory = gender)  %>% 
  hypothesize(null = "independence")  %>% 
  generate(reps = 1000, type = "permute")  %>% 
  calculate(stat = "F")

null_distribution_anova
# A tibble: 1,000 x 2
   replicate   stat
       <int>  <dbl>
 1         1 0.365 
 2         2 0.650 
 3         3 0.185 
 4         4 0.0184
 5         5 0.163 
 6         6 0.0194
 7         7 4.92  
 8         8 2.11  
 9         9 0.341 
10        10 0.855 
# … with 990 more rows

visualize the simulated null distribution

visualize(null_distribution_anova)


**calculate the statistic from your observed data

observed_f_sample_stat  <- hr_anova %>%
  specify(response = hours, explanatory = status)  %>% 
  calculate(stat = "F")

observed_f_sample_stat
# A tibble: 1 x 1
   stat
  <dbl>
1  115.

get_p_value from the simulated null distribution and the observed statistic

null_distribution_anova  %>% 
  get_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
# A tibble: 1 x 1
  p_value
    <dbl>
1       0

shade_p_value on the simulated null distribution

null_t_distribution  %>% 
  visualize() +
  shade_p_value(obs_stat = observed_f_sample_stat, direction = "greater")


ggsave(filename = "preview.png", 
       path = here::here("_posts", "2021-05-13-hypothesis-testing"))

Is the p-value < 0.05? yes

Does your analysis support the null hypothesis that the true means of the number of hours worked for those that were “fired”, “ok” and “promoted” were the same? ??? no